Тіла обертання

Тіла обертання

Циліндр

Круговим циліндром називається тіло, яке складається з двох кругів, що не лежать в одній площині й суміщаються паралельними перенесенням, і всіх відрізків, що сполучають відповідні точки цих кругів (див. рисунок). Круги називаються основами циліндра, а відрізки, що сполучають точки кіл кругів, — твірними циліндра.
Основи циліндра рівні й лежать у па­ралельних площинах.
Твірні циліндра паралельні й рівні.
Бічна поверхня циліндра складається з його твірних. Поверхня — з основі бічної поверхні. Радіус циліндра — це радіус його основи. Висота циліндра — відстань між площинами його основ. Віссю циліндра називається пряма, яка проходить через центри основ. Вісь циліндра паралельна твірним. Циліндр називається прямим, якщо ­його твірні перпендикулярні до площин основ. Прямий циліндр (далі просто «циліндр») можна дістати в результаті обертання прямокутника навколо сторони як осі.
У прямому циліндрі висота дорівнює твірній. Перерізом циліндра площиною, паралельною його осі, є прямокутник. Дві його сторони — твірні циліндра, а дві інші — рівні й паралельні хорди основ. Осьовий переріз — переріз циліндра площиною, яка проходить через його вісь.
Площина, паралельна осі циліндра, перпендикулярна до площин його основ (див. рисунок):

Відстанню від осі циліндра до площини перерізу, якщо ця площина паралельна осі циліндра, є перпендикуляр, проведений з точки , до хорди (або з О до АВ).
Зверніть увагу: відрізок є висотою, тобто бісектрисою й медіаною в рівнобедреному трикутнику , де (радіус циліндра).
Хорду АВ видно з центра нижньої основи під кутом АОВ, а з центра верхньої основи — під кутом . Відрізок є бісектрисою, медіаною, висотою рівнобедренного , а є ортогональною проекцією на площу нижньої основи.
Отже, .
Площина, паралельна площині основи циліндра, перетинає його бічну поверхню по колу, яке дорівнює колу основи (див. рисунок).

Площа бічної поверхні циліндра обчислюється за формулою , де С — дов­жина кола основи, R — радіус циліндра, H — його висота.

Конус

Круговим конусом називається тіло, яке складається з круга — основи конуса, точки, яка не лежить у площині цього круга, — вершини конуса і всіх відрізків, що сполучають вершину конуса з точками основи. Відрізки, що сполучають вершину конуса з точками кола основи, називаються твірними конуса.
Конус називається прямим (далі просто «конус»), якщо пряма, що сполучає вершини конуса з центром основи, перпендикулярна до площини основи.
Прямий круговий конус можна розглядати як тіло, утворене в результаті обертання ­прямокутного трикутника навколо його катета як осі.
Висота конуса — перпендикуляр, опущений із його вершини на площину основи.
Віссю прямого кругового конуса називається пряма, яка містить його висоту.
Зверніть увагу на рисунок нижче. Так звані «контурні твірні» SA i SB є дотичними до еліпса, який зображує основу конуса, точки A і B не є кінцями великої осі еліпса. Переріз конуса площиною, яка проходить через його вершину, — рівнобедрений трикутник, у якого бічні сторони є твірними конуса, а основою є хорда основи.

Розглянемо переріз CSD. Він перетинає основу конуса по хорді CD.
Хорду CD видно з центра основи під кутом COD, а з вершини конуса — під кутом CSD.
Сам переріз — рівнобедрений з основою CD, де твірні конуса. Його ортогональною проекцією на площину основи конуса є рівнобедрений з основою CD і . Відрізок OK є бісектрисою, медіаною, висотою , відстанню від точки O до хорди CD. Відрізок SK є бісектрисою, медіаною, висотою та відстанню від вершини конуса S до хорди CD. є лінійним кутом двогранного кута між площиною перерізу й площиною основи. Отже, , — кути нахилу твірної конуса до його основи.
Площа бічної поверхні конуса обчислюється за формулою , де Sосн — площа основи, — кут нахилу твірної конуса до його основи.

Зрізаний конус

Площина, паралельна площині основи конуса, перетинає конус по кругу, а бічну поверхню — по колу з центром на осі конуса. Така площина відтинає від конуса менший конус. Частина, що залишилась, називається зрізаним конусом (див. рисунок):
;



Зверніть увагу на осьовий переріз зрізаного конуса. Це рівнобічна трапеція, в якої основи — діаметри основ зрізаного конуса, бічні сторони — твірні, висота — висота зрізаного конуса.
Отже, .
Sб, де , — формула для обчислення бічної поверхні зрізаного конуса.

Куля

Кулею називається тіло, що складається з усіх точок простору, які розташовані від даної точки на відстані, що не більша за дану. Ця точка називається центром кулі, а дана відстань — радіусом кулі. Межа кулі називається кулевою поверхнею, або сферою. Відрізок, що сполучає дві точки кульової поверхні й проходить через центр кулі, називається діаметром. Куля є тілом обертання, яке утворюється під час обертання півкруга навколо його діаметра як осі. Будь-який переріз кулі площиною є круг. Центр цього круга є основою перпендикуляра, опущеного з центра кулі на січну пло­щину.
На рисунку у , OA — радіус кулі, — радіус перерізу, — відстань від центра кулі до площини перерізу (d).
.





Площина, яка проходить через центр кулі, називається діаметральною площиною. Переріз кулі діаметральною площиною називається великим кругом, а переріз сфери — великим колом, або екватором.
Будь-яка діаметральна площина кулі є її площиною симетрії. Центр кулі є її центром симетрії.
Площина, яка проходить через точку А кульової поверхні та є перпендикулярною до радіуса, проведеного в точку А, називається дотичною площиною. Точка А називається точкою дотику.
Дотична площина має з кулею тільки одну спільну точку — точку дотику.
Пряма, яка належить дотичній до кулі площині й проходить через точку дотику, називається дотичною до кулі в цій точці. Вона має з кулею тільки одну спільну точку. Лінією перетину двох сфер є коло.
Площа сфери радіусом R обчислюється за формулою .
Кульовим сегментом називається частина кулі, яку відтинає від неї січна площина.
На рисунку H — висота кульового сег­мента.
Кульовий сегмент обмежується частиною сфери, площа якої обчислюється за формулою , і кругом, який називається основою сегмента.
Кульовий сектор — це кульовий сегмент і конус, вершина якого в центрі кулі, а основою є основа сегмента.

, якщо ­його твірні перпендикулярні до площин основ. Прямий циліндр (далі просто «циліндр») можна дістати в результаті обертання прямокутника навколо сторони як осі. і br /

Copyright © 2009-2017. All Rights Reserved.