Хвильова оптика

Хвильова оптика

Швидкість світла. Закони відбивання і заломлення світла. Повне відбивання

У 8 класі розглядаються закони відбивання світла і подається поняття залом-лення світла, але закони заломлення не розглядаються.
Швидкість світла у вакуумі м/с, приблизно така ж вона і в повітрі. У більш густих, ніж повітря, прозорих середовищах . При переході світлових променів з одного прозорого середовища в інше напрями променів змінюються (світло заломлюється).
Є два закони заломлення (так само, як і два закони відбивання).
Закони заломлення:
1) Відношення стале для даних двох середовищ і називається відносним показником заломлення другого середовища відносно першого (наприклад, води відносно повітря): .
2) Заломлений промінь, падаючий промінь і нормаль до поверхні поділу середовищ знаходяться в одній площині.
Крім відносного показника заломлення, в оптиці користуються поняттям і абсолютного показника заломлення.
Абсолютний показник заломлення речовини — відношення швидкості світла у вакуумі (або в повітрі) до швидкості світла в даній речовині: , тоді .
В оптиці користуються поняттям густини, яке не збігається з поняттям густини речовини в механіці (). Із двох середовищ оптично більш густим є те, показник заломлення якого більший.
Якщо перше середовище оптично густіше за друге, то зі збільшенням кута падіння світла заломлений промінь, «опускаючись», наближується до межі поділу середовищ. При деякому значенні кута ? (критичний або граничний кут ) заломлення не відбувається, промінь ковзає вздовж поверхні розподілу середовищ (промінь 3).

Якщо , світловий промінь повертається в перше середовище, тобто відбувається лише відбивання світла всередину першого середовища, без виходу в друге. Значення критичного кута для різних пар середовищ різне. Оскільки критичному куту падіння відповідає прямий кут заломлення (), то, скориставшись формулою відносного показника заломлення, умову повного відбивання можна записати так: .
Як підсумок, можна сформулювати закон повного відбивання світла: при переході світлового променя з оптично більш густого середовища в оптично менш густе на межі поділу цих середовищ може виникати повне відбивання променя за умови, що значення кута падіння перевищить деяке критичне значення, стале для даних двох середовищ.
На принципі повного відбивання світла функціонують волокнисті світловоди — пристрої, що використовуються у волоконній оптиці.

Когерентність. Інтерференція світла та її застосування в техніці

Когерентними називаються взаємозв’язані (узгоджені) хвилі.
Дві хвилі когерентні, якщо:
а) ;
б) фази хвиль або збігаються (), або не збігаються (), але .
Когерентні хвилі випромінюються лише лазерами. Когерентні світлові хвилі від інших джерел можна одержати штучно, розділяючи хвилю (промінь) на дві частини і забезпечуючи проходження ними різних шляхів до точки зустрічі. Для цього використовують подвійні щілини, дзеркала, лінзи, призми, напівпрозорі дзеркала.
Інтерференція хвиль — це явище, яке виникає в результаті процесу накладання декількох когерентних хвиль і полягає у збільшенні амплітуди коливань в одних ділянках простору і зменшенні — в інших.
Чергування інтерференційних максимумів і мінімумів утворюється шляхом перерозподілу в просторі енергії хвиль, які накладаються. Для випадку світлових хвиль воно має вигляд світлих і темних ділянок.
Сфери застосування інтерференції: наука (наприклад, в оптиці для дослідження структури спектрів, для визначення кутових розмірів небесних тіл), техніка (для поліпшення оптичних приладів шляхом просвітлення їх об’єктивів, для контролю якості шліфовки поверхонь деталей та ін.).

Дифракція світла. Дифракційна ґратка

Дифракціяхвиль — це явище огинання хвилями країв неоднорідностей на шляху хвиль. Для світлових хвиль дифракція — це потрапляння світла в ділянки геометричної тіні.

Дифракція чітко виявляється у випадку, коли розміри неоднорідності (наприклад, отвору) сумірні з довжиною хвилі (а). Якщо ж розміри завеликі, вона спостерігається лише на великих відстанях від неоднорідності (б).
Дифракційна ґратка (пристрій для вивчення закономірностей дифракції, дослідження спектрів і вимірювання довжин світлових хвиль) являє собою сукупність великого числа вузьких щілин однакової ширини, відокремлених непрозорими проміжками теж однакової ширини. (Принцип виготовлення сучасних ґраток такий: на загальному непрозорому фоні скла, вкритого тонким шаром алюмінію, мікрорізцем прорізують вузькі «вікна».)
Різні за якістю дифракційні ґратки мають від 300 до 1200 штрихів на міліметр (скла чи алюмінієвого покриття). Сума ширини прозорої ділянки ґратки і ширини непрозорої ділянки — це стала дифракційної ґраткиd.
Формула дифракційної ґратки , де — ціле число.

Світлова картина, яка утворилась би при використанні однієї щілини, була б суто дифракційною, а при використанні ґратки утворюється інтерференційна картина як наслідок накладання променів від різних щілин. Отже, даний вираз відповідає умові, якій має задовольняти різниця ходу інтерферуючих променів для утворення інтерференційного максимуму.

Дисперсія світла

Дисперсієюсвітла називається явище залежності швидкості світла (а отже, і показника заломлення n світла речовиною) від довжини хвилі (частоти) світла.
Показник n тим більший, чим менша . Треба пам’ятати, що : нм, нм (1 нм == 10–9 м).
Якщо на скляну призму спрямувати промінь сонячного світла, то на виході з призми буде спостерігатися розширена світлова смуга із забарвленням, що безперервно (плавно) змінюється. Ця смуга називається спектром.

Для запам’ятовування послідовності кольорів у спектрі зручно користуватись мнемонічною умовною фразою. Усім відома фраза про «допитливого мисливця» («Каждый охотник желает знать...»). Можна запропонувати «саморобне» речення українською: «Чарівна Олена і Жаба Зелена Багатьом Сприяли Фантазіям» (початкові літери цих слів дозволяють пам’ятати чергування кольорів: червоний, оранжевий, жовтий, зелений, блакитний, синій, фіолетовий).

Поляризація світла

Світлову хвилю графічно зображають двома взаємно перпендикулярними сину-соїдами. Цей графік відповідає елементарній хвилі, тобто хвилі, яку випромінював би один збуджений атом в одному акті випромінювання. При цьому вектор коливається вздовж однієї прямої (OZ) у двох напрямках у межах єдиної площини (XOZ), а вектор — уздовж OY в межах XOY. У більшості оптичних явищ основну роль відіграє електричне поле світлової хвилі, то ж можна розглядати тільки коливання вектора («світлового вектора»).

Світловий промінь елементарної (по-одинокої) хвилі в принципі поляризований. Але макроджерела світла (реальні джерела) складаються з величезного числа частинок-випромінювачів. Крім того, просторова орієнтація векторів в різні моменти актів випромінювання окремою частинкою хаотична. Отже, в загальному випромінюванні напрямки в кожний момент часу випадкові, непередбачувані. Тому природне світло неполяризоване. Його можна перетворити на поляризоване пропусканням через прозорі природні монокристали (такі як ісландський шпат, турмалін) або через штучні поляризатори (поляроїди).
Можна схематично зобразити природний (а) і поляризований (б) промені; у центрі кружечок — слід перетину променя OX із площиною рисунку:

Явище поляризації світла є одним із доказів поперечності світлової хвилі.

Електромагнітні випромінювання різних діапазонів

Електромагнітні хвилі характеризуються дуже широким діапазоном довжин хвиль: від крихітних часток метра ( м) до десятків і сотень тисяч кілометрів. Електромагнітні хвилі, які відповідають різним ділянкам цього діапазону, можна одержати у різний спосіб. Крім спільних властивостей (відбивання, заломлення, інтерференції, дифракції) електромагнітні хвилі мають також індивідуальні властивості. Виходячи з цього, весь діапазон електромагнітних хвиль підрозділяють на окремі ділянки і зображують у вигляді шкали — від радіохвиль до -променів.

Радіохвилі підрозділяються на окремі ділянки, починаючи з довгих хвиль (кілометрових і навіть більше) і закінчуючи короткими та ультракороткими хвилями.
Електромагнітні хвилі, дія яких на сітківку ока людини створює здорові відчуття, називаються видимим світлом.
На відміну від звукових коливань, які сприймає людське вухо, видиме світло характеризується дуже вузьким діапазоном: від нм (довгохвильова межа червоного світла) до нм (коротко-хвильова межа фіолетового світла).
Оскільки межі діапазону звукових хвиль прийнято характеризувати частотами (), то слід навести для порівняння у частотах і межі світлового діапазону: .
З боку довгих хвиль до ділянки видимого світла прилягає ділянка інфрачервоного випромінювання. Це невидиме випромінювання порівняно малої енергії, що має дуже слабку проникну здатність і чинить теплову дію на речовини.
З боку коротких хвиль до ділянки видимого світла прилягає ділянка ультрафіолетового випромінювання.
Рентгенівськимпроменям і ?-променям, завдяки їх великій енергії, притаманна здатність проникати у речовину, що зумовлює їх застосування у медицині (для рентгеноскопії внутрішніх органів людини, дефектоскопії конструкційних матеріалів та виробів із них); ?-промені використовуються також для дефектоскопії та для пригнічення росту аномальних клітин.
Усі ділянки шкали електромагнітних хвиль не мають чітких розмежувань, спостерігається їх перекривання одна одною.

Copyright © 2009-2017. All Rights Reserved.